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ABSTRACT

i _

We review the parallel variable metric optimization algorithms of Straeter (1973) and van

Laarhoven (1985) and point out the possible drawbacks of these algorithms. By including

Davidon (1975) projections in the variable metric updating we can generalize Straeter's

algorithm to a family of parallel projected variable metric algorith_ns which do not suffer the

above drawbacks and which retain quadratic termination. Finally we consider the numerical

performance of one member of the family on several standard example problems and illustrate

how the choice of the displacement vectors affects the performance of the algorithm.

*This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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1 Introduction

In this paper we consider the problem of finding the unconstrained minimum of the nonlinear

function of n variables f(_), where f(z) is twice continuously differentiable and z e _ _,n.

In particular we consider the development of algorithms for the solution of the problem

on a parallel computer. Function and gradient evaluations are usually considered to be

the most computationally expensive part of an optimisation algorithm and most parallel

optimisation algorithms include the simultaneous evaluation of the function, or the gradient

vector, at a number of different points. The expectation is that this extra function or

gradient information will result in an algorithm which converges more rapidly. For a survey

of parallel optimization algorithms see Lootsma and Ragsdell (1988), Lootsma (1989) or

Schnabel (1988).

On a sequential computer, when the function f(z) and the gradient vector g(z) are

available, but the Hessian matrix G (z) is not available, one of the most popular methods

for finding an unconstrained local minimum is a variable metric (quasi-Newton) method (see

Fletcher (1987), Gill, Murray and Wright (1981), Dennis and Schnabel (1983)). One way of

adapting such an algorithm to a parallel computer is that considered by Straeter (1973) and

van Laarhoven (1985). It is the further development of these ideas which is the subject of

this paper. Alternative approaches to parallel variable metric methods have been suggested

by Schnabel (1987) and Byrd, Schnabel and Shultz (1988a,b).

In Section 2 we review the parallel variable metric method of Straeter (1973) and van

Laarhoven (1985) and point out the possible drawbacks of the method. One way of avoiding

these difficulties is to use suitably projected vectors in the variable metric updating, as

suggested by Davidon (1975) in the context of a sequential variable metric algorithm. This

leads to the family of parallel variable metric methods described in Section 3. In Section 4 we

consider the numerical performance of these new algorithms on a collection of test examples.

2 A parallel symmetric rank one algorithm

The first attempt to develop a parallel variable metric algorithm is due to Straeter (1973).

He proposed a parallel generalisation of the well-known symmetric rank-one (SR1) algorithm

(see Fletcher (1987), p.51). On each iteration the algorithm evaluates the gradient vector

at different displaced points, in parallel, and incorporates the gradient information thus

obtained into the approximate inverse Hessian matrix H by a sequence of SR1 updates.

The expectation, which is justified by limited numerical experiments, is that this extra

gradient information will result in an improved Hessian approximation which in turn will



result in an algorithm which requiresfewer iterations for convergence.

If we let H denote the approximate inverse Hessian matrix, then Straeter's algorithm is

given by the following steps.

x. Select z),o E R)`n, and n linearly independent directions 6)`1,6),2, ..., _)`n , and set

H o=I andk=0.

2, Calculate, is PARAI, L_,L, V f(z,Xk ), V f(z)`k, _), V f(z)`k, 2),..., V f(')`k, n), where

z)`k,j : z)`k + 6Aj.

With vk.o = Hk, for j = 1, 2,..., n, calculate

_Ak,j -=--vf(;eAk,./) -- vf(z)`k),

,._k,i = Vk.j-,'rX_',i -- _Xi,

_d = _,j-_-
rXk,jr_k,jXT

_Ak, jATr )`k, j

Set Hk+_ = Vk,n and calculate the search direction

sAk =--Hk+_v f(=Ak).

(2.1)

(2.2)

(2.3)

(2.4)

3. Perform an approximate line search along s)`k to determine the steplength aAk. Set

z)`k + 1 = zAk + aAksAk, (2.5)

k = k + 1 (2.6)

and return to 2.

It can be shown that, for the positive definite quadratic function q(=) = ½=)`TAz +

b)`Tz + c and for an arbitrary initial point _)`o, H, = AA--x and the first iteration will

locate the minimum of q(_) provided that a steplength of 1 is chosen. This result is to be

expected since the SR1 algorithm is known to generate the true (inverse) Hessian matrix

after inexact line searches along n linearly independent directions (see Brodlie (1977)).

The SRI updates (step 2) of Straeter's algorithm are performed sequentially, with vk,j

dependent on 6A j, "r_,k, j and Vkd-_. It is not possible to incorporate these updates simul-

taneously since it can be shown that multiple secant updates are, in general, inconsistent

with preserving symmetry of the approximate matrices (see Schnabel (1983)).

van Laarhoven (1985) attempts to generalize Straeter's ideas to the Huang family of

updating formulae (Huang (1970)), but finds that, in general, the only symmetric formula
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which has quadratic termination is Straeter's parallel SR1 formula. This is inevitable since

the SR1 formula is the only member of the Broyden family of updating formaulae which has

quadratic termination without exact line searches (see Brodlie (1977)).

van Laarhoven (1985) derives a parallel generalisation of Broyden's rank one formula

(Broyden (1965)). This results in an algorithm which has quadratic termination, but the

approximate matrices are in general unsymmetric.

One major drawback of the parallel algorithms of this section is that the approximate

matrices//k are not guaranteed to be positive definite and may fail to exist if the denominator

of the rank one correction is zero. In the next section we describe a parallel generalisation

of Davidon's projected updating formula (Davidon (1975)) which has quadratic termination

and which guarantees the existence and positive definiteness of the approximate matrices.

3 A family of parallel symmetric rank two algorithms

In this section we obtain a family of parallel symmetric rank two algorithms, which have

quadratic termination, by generalising Straeter's ideas to the family of projected updating

formulae of Davidon (1975). Serial variable metric algorithms based on Davidon's projected

updating formulae can be shown to have quadratic termination without requiring exact line

searches on each iteration.

The obvious extension of Straeter's ideas would be to use a projected updating formula

to update Vk.i, j = 0, 1,... ,n -- 1, (and thus Hk) in step 2 of the algorithm of Section 2.

However to calculate the required projected vectors it is necessary to also update the inverse

matrices vk.j_,-z, j = 0, 1,..., n. This contrasts with the serial implementation where the

special form of the gradient differences enables the projected vectors to be calculated without

explicit knowledge of H A- z (see Davidon (1975), Shanno and Phua (1978a) and Freeman

and KSrner (1982)). Given that both the approximate Hessian matrix and its inverse are

required it is efficient to update the I,D £ _,T factors of an approximation B to the Hessian

matrix itself.

In addition, since the information is readily available, we use the same formula to update

the approximate Hessian matrix after each line search. The resulting algorithm is as follows.

z. Select m_o E _,n, and n linearly independent directions 6:Xz, 6_2, ..., 6;in , and set

Bo : I(==# Lo : I and Do : I) and k : 0, and calculate xTf(_._,o).

2. Calculate, iN PARALLST., v f(m_t_, _ ), v f(_h, 2),.. ., v f(m_h, n), wherez_k,j = z_b. + 6_j

With Wk,o = LkDkLk_T ----BI¢, for j = 1,2, ... ,n, calculate

_>,k,j = vf(->,_,i) - vf(_,_), (3.1)



and update the LDLXT factors of Wkd-1 --_ Wkd using a projected symmetric

rank two updating formula.

Set Lk+_Dk+ILk+_AT - B k+_ -- Wk,,_ and calculate the search direction ,_,k, where

Zk+l-ff k+lL-"k+,.XT ,.Xk = -- V f(zAk ). (3.2)

3- Perform an approximate line search along 8Xk to determine the steplength a_k. Set

xAk + t = zAk + otAksAk, (3.3)

calculate V f(zX/e + t) and

7),k = V f(zAk + _) - V f(z),k), (3.4)

and update the L D L AT factors of B _+, ----* B k+l using a projected symmetric rank

two updating formula. Set

Lk+xDk+xLk+x_T = Bk+xl (3.5)

k = k + 1 (3.6)

and return to z.

If we omit the superfixes and suffices and let I_ denote an updated quantity then the

projected rank two updating formula for w is given by

where

w _, _l = w +

l[]lJ --

WzzXTW
+ ¢(zXTW.)_,_xr, (3.7)

zATWz

y Wz

yXT z z),TW z

11 -- P'7 _

z -'- PXTS_

P --'Y[YXTWA--tY]Pt-xYATWA--x,

r = [,,,,,],

(3.s)

(3.9)

(3.1o)

(3.11)

(3.12)

and v is given by

,, : w 6 - 7, (3.13)

and uAlt, one of the basis vectors for the next application of the updating formula, is given

by

ua_ = (v)_TS)u - (uXT_)v. (3.t4)

4



If we set u = - V f(z X k) at the start of each iteration then the algorithm can" be shown

to have quadratic termination (see Davidon (1975), Powell (1977)). Further, provided that

yATz > 0 and ¢ is suitably bounded below, the update maintains both symmetry and

positive definiteness of w_.j and hence B k.

We update the LDLXT factors of Wk.j by using the formulae given in Fletcher and

Powell (1974). Their composite t-method includes monitoring of the updating to ensure

that rounding errors do not cause the matrices Wk,i to become indefinite.

As noted in Freeman and K5rner (1982), the vectors u and v simply provide a basis for a

space which is orthogonal to the preceding updating directions. In order to make this basis

well-scaled we normalise the vectors u and v in the W A- 1 metric, so that we define the

normalised basis vectors

and use these vectors in place of u and v in (3.12).

When _- and _- are linearly dependent in the W A-1 metric the projected symmetric

rank two update reduces to the symmetric rank one (SR1) update. Thus if

1 - (_-),TW),- 1V)A2 < e (3.17)

where e is the machine precision, then a symmetric rank one update, based on "r and 6, is

attempted. Similarly, if

yATz < e, (3.18)

the projected symmetric rank two update is not guaranteed to maintain positive definiteness

and a symmetric rank one update, based on "r and 6, is again attempted. In both cases

this SR1 update is abandoned if it would result in an indefinite Hessian matrix, a condition

which can be recognised by the composite t-method which is used to perform the updating.

4 Numerical Results

In this section we illustrate the numerical performance of the algorithm of Section 3 by

applying it to the set of test problems considered by Shanno and Phua (1978a). The results

were obtained using the Amdahl 5890-300 at the Manchester Computing Centre using about

14 decimal digit accuracy. Before considering the numerical results some of the details of

the algorithm need to be clarified.

5



The line searchof step 3. usesbracketingand interpolation asdescribedin Section2.6

of Fletcher (1987)with the parametersa. = 0.99 and p = 0.01. The convergence condition

of the overall algorithm is

Ils_ll _ < e, (4.1)

where in the examples of this section we take e = 10A-7, or approximately the square root

of the machine precision. The parameter ¢ of (3.7) is taken to be 0 corresponding to a

projected BFGS updating formula.

We consider two alternative choices for the n linearly independent directions 6Ai,j =

1,2,..., n, of step 2. of the algorithm.

The algorithm, PARALLEL I, defines 6_,d as

6_,j = TeAj, (4.2) _

where e),d is the jMh column of the n × n identity matrix, and

{_, k = o, (4.3)r = _ll_k - _xk - 1112, k >_1

Thus on the kAth iteration the magnitudes of the displacements on which the parallel updat-

ing is based depend=on the magnitude of the step taken bythe algorithm on the (k- 1)Ath

iteration. In the examples of Table 1 we take # = 10)_-2, except for the extended Rosenbrock

function with n = 20, in which case we take # = 10)_-4.

The alternative algorithm, PARALLEL II, defines

is given by (4.3).

Conjugate, since

6xj = rz_j/z_Jll_, (4.4)

where, on the k)_th iteration, lXj is the j)tth column of the n x n matrix Lk_-T and T

The justification for this choice is that the vectors l_d are mutually Bk

LkA- xBkLkX- T = Dk,

and D_ is diagonal. This choice of 5_j is slightly more expensive since it involves the

solution of n triangular systems of equations on each iteration. Note that, as in PARALLEL

I, on the kAth iteration, k > 1,

116xJlb= _ll_k - ,x_ - _ll_,J = 1,2,...,_.

The results of Table 1 are obtained using the value # = 10A-2 in (4.3).

Table 1 includes the number of function evaluations and the number of iterations required

to satisfy the convergence condition. *** indicates that the algorithm fails to satisfy the

=

|



convergencecondition after 400function evaluations.The starting values(initial point) are

given in Table 1, except for the Mancino function for which the starting values are given in

Shanno and Phua (1978b).

These numerical results show that the parallel projected variable metric algorithms, PAR-

ALLEL I and PARALLEL II, converge in less iterations (for some problems considerably

less iterations) than the corresponding projected quasi-Newton algorithm. Of course each

iteration of the parallel algorithms requires the evaluation of the gradient vector at the n

displaced points ; we are assuming that a parallel MIMD computer will allow these gradient

vectors to be evaluated simultaneously (indeed the gradient vectors could be evaluated con-

currently with the line search of the previous iteration using the speculative evaluation ideas

of Schnabel (1987).

Choosing the displacement directions as the normalised columns of L },-T, PARAL-

LEL II, results in an algorithm which is somewhat more efficient (in terms of iterations)

than PARALLEL I, which chooses the displacement directions as the co-ordlnate directions.

PARALLEL II requires the solution of n triangular systems of linear equations on each it-

eration; again a parallel MIMD computer will allow each of these triangular systems to be

solved concurrently on the separate processors.

5 Conclusions

One of the major reservations about the parallel variable metric algorithm of Straeter (1965)

is its use of the symmetric rank one (SR1) updating formula, which allows quadratic ter-

mination of the algorithm to be established. In this paper we have generalized Straeter's

algorithm to use a projected symmetric rank two updating formula (Davidon (1975)) and

have thus developed a family of parallel projected variable metric algorithms. These al-

gorithms avoid the use of the SR1 updating formula, yet retain the quadratic termination

property of Straeter's algorithm.

Initial numerical testing, on a serial computer, indicates that these new parallel algo-

rithms are more efficient (in terms of number of iterations required) than existing serial

variable metric algorithms. For some problems, such as the extended Rosenbrock function

of dimension 20, the parallel algorithms are considerably more efficient. For this reduced

number of iterations to result in an algorithm which is more efficient (in terms of execu-

tion time) on a parallel computer depends on the assumption that the cost of function and

gradient vector evaluations dominate all other costs of the algorithm.

The new algorithm can exploit parallel computing capabilities to evaluate the displaced

gradient vectors; however it is unclear that the sequence of projected rank two updates could



exploit parallelism. The implementationand performanceof the new parallel algorithms on

a local memory MIMD computer will be reported in a separate paper.
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FUNCTION PARALLEL I PARALLEL II PROJECTED

Initial Iterations Function Iterations Function Iterations Function

point evaluations evaluations evaluations

Rosenbrock 2

(-1.2,1)
(2,-2)
(-3.635,5.621)

(s.39,-0.221)
(1.489,-2.547)

Rosenbrock 20

(-1.2,1,...)
(2,-2,...)

(-3.635,5.621,...)

(6.39,-0.221,...)

(1.489,-2.547,...)

Wood 4

(-3,-1,-3,-1)

(-3,1,-3,1)

(-1.2,1,-1.2,1)

(-1.2,1,n2,1)

Oren 20

0,1,.. ,1)

Powcll 4

(-3,-1,0,1)

Mancino 10

Mancino 20

Mancino 30

21 22

16 17

32 34

35 40

13 14

23 29

37 126

64 170

118 313

22 43

37 42

38 50

33 41

21 26

43 43

47 48

4 4

5 5

5 5

18 21

15 18

31 42

36 48
12 14

27 37

31 50

54 164

64 170

18 41

35 48
32 41

32 40

19 22

43 43

42 42

4 4

4 4

5 5

35 50

44 62

27 41

56 81
34 52

150 233

124 205
99 166

138 227

33 59

34 61

70 106

46 69

96 201

72 87

13 62

29 127

33 164

Table 1: Numerical Performance of Parallel variable metric algorithms
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